Fermat’s Last Theorem after 356 Years
نویسنده
چکیده
The purpose of this expository lecture is to explain the basic ideas underlying the final resolution of “Fermat’s Last Theorem” after 356 years as a consequence of the reported establishment by Andrew Wiles of a sufficient portion of the “Shimura-Taniyama-Weil” conjecture. As these notes are being written, the work of Wiles is not available, and the sources of information available to the author are (1) reports by electronic mail, (2) the AMS Notices article [16] of K. Ribet, and (3) a preprint [18] by K. Rubin and A. Silverberg based on the June, 1993 lectures of Wiles at the Newton Institute in Cambridge, England. It should be noted that the fact that “Fermat’s Last Theorem” is a consequence of sufficient knowledge of the theory of “elliptic curves” has been fully documented in the publications ([14], [15]) of K. Ribet. “Fermat’s Last Theorem” is the statement, having origin with Pierre de Fermat in 1637, that there are no positive integers x, y, z such that x + y = z for any integer exponent n > 2. Obviously, if there are no positive integer solutions x, y, z for a particular n, then there are certainly none for exponents that are multiples of n. Since every integer n > 2 is divisible either by 4 or by some odd prime p, it follows that “Fermat’s Last Theorem” is true if there are no solutions in positive integers of the equation x + y = z when n = 4 and when n = p for each prime p > 2. The cases n = 3, 4 are standard fare for textbooks (e.g., see Hardy & Wright [6]) in
منابع مشابه
Fermat’s Last Theorem for Regular Primes
Fermat famously claimed in the margin of a book that a certain family of Diophantine equations have no solutions in integers. For over 300 years Fermat’s claim remained unsolved, and it provided motivation for many important developments in algebraic number theory. We will develop some of the foundational ideas of modern algebraic number theory in the context of Fermat’s Last Theorem, and sketc...
متن کاملA fourteenth lecture on Fermat’s Last Theorem∗
The title of this lecture alludes to Ribenboim’s delightful treatise on Fermat’s Last Theorem [Rib1]. Fifteen years after the publication of [Rib1], Andrew Wiles finally succeeded in solving Fermat’s 350-year-old conundrum. That same year, perhaps to console himself of Fermat’s demise, Ribenboim published a second book, this time on Catalan’s conjecture that there are no consecutive perfect pow...
متن کاملOn Wendt's Determinant and Sophie Germain's Theorem
Research supported by the Natural Sciences and Engineering Research Council (Canada) and Fonds pour la Formation de Chercheurs et l'Aide a la Recherche (Quebec). Some results in section 3 of this work are taken from Jha's Ph.D. thesis [Jha 1992]. After a brief review of partial results regarding Case I of Fermat’s Last Theorem, we discuss the relationship between the number of points on Fermat’...
متن کاملKummer’s Special Case of Fermat’s Last Theorem∗
One particularly elegant example of an application of modern algebraic number theory to a classical problem about the integers is found in Kummer’s special case of Fermat’s Last Theorem. In this paper, we reduce Fermat’s Last Theorem to the question of whether or not there exist integer solutions to xp + yp = zp for p an odd prime. We then give a thorough exposition of Kummer’s proof that no su...
متن کاملDiophantine Equations after Fermat’s Last Theorem
These are expository notes that accompany my talk at the 25th Journées Arithmétiques, July 2–6, 2007, Edinburgh, Scotland. I aim to shed light on the following two questions: (i) Given a Diophantine equation, what information can be obtained by following the strategy of Wiles’ proof of Fermat’s Last Theorem? (ii) Is it useful to combine this approach with traditional approaches to Diophantine e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998